Jet Quenching at RHIC vs LHC in Light of Recent dAu vs pPb Controls

RIKEN BNL Research Center Workshop April 15-17, 2013 at Brookhaven National Laboratory

Experimental status of flavour tomography

Andrea Dainese (INFN Padova, Italy)

Outline of the Talk

- ◆ Introduction: HF probes of the medium (→ see A.Buzzatti)
- Calibrating HF probes: pp results
- HF production in nucleus-nucleus:
 - Semi-leptonic decays PHENIX, STAR
 - D mesons
 - ➤ B and b-jets

PHENIX, STAR

STAR

- Proton-nucleus control data
- HF azimuthal anisotropy
- Outlook: detector upgrades at RHIC and LHC

Outline of the Talk

- ◆ Introduction: HF probes of the medium
- Calibrating HF probes: pp results
- ◆ HF production in nucleus-nucleus:
 - Semi-leptonic decays
 - > D mesons
 - ➤ B and b-jets
- Proton-nucleus control data
- HF azimuthal anisotropy
- Outlook: detector upgrades at RHIC and LHC

Heavy flavour production in pp

State-of-the-art pQCD calculation: Fixed Order Next-to-Leading Log

$$\frac{d\sigma}{dp_T} = A(m)\alpha_s^2 + B(m)\alpha_s^3 + G(m, p_T) \left[\alpha_s^2 \sum_{i=2}^{\infty} a_i [\alpha_s \log(\mu/m)]^i + \alpha_s^3 \sum_{i=1}^{\infty} b_i [\alpha_s \log(\mu/m)]^i \right]$$
FONLL: Cacciari, Frixione, Mangano, Nason and Ridolfi, JHEP0407 (2004) 033

[coincides with NLO for low p_T (total cross section); more accurate at high p_T]

- Describes consistently energy dependence of total cross sections
- Charm (beauty) x10 (100) from 0.2 to 2.76 TeV

pp: pQCD calculations vs data Charm p_T -differential cross section

- Charm production described within uncertainties
- Consistently at upper limit of theoretical band from 0.2 to 7 TeV

J. Bielcik (Moriond2013)

pp: pQCD calculations vs data Beauty p_T -differential cross section

1.96 TeV

7 TeV

CDF, PRD71 (2005) 032001

ALICE, PLB721 (2013) 13

Beauty production described very well by central value of calculation

pp: pQCD calculations vs data HF-lepton p_T -differential cross section

2.76 TeV

ALICE, PRL 109 (2012) 112301

7 TeV

ALICE, PRD86 (2012) 112007 ATLAS, PLB707 (2012) 438

- HF-decay electrons and muons at central and forward y
- FONLL: "b > c" for $p_T > 4$ (5) GeV/c at RHIC (LHC)

N.Apadula (WWND2013)

Outline of the Talk

- ◆ Introduction: HF probes of the medium
- Calibrating HF probes: pp results
- HF production in nucleus-nucleus:
 - Semi-leptonic decays PHENIX, STAR
- PHENIX, STAR

- > D mesons
- ➤ B and b-jets
- Proton-nucleus control data
- ◆ HF azimuthal anisotropy
- Outlook: detector upgrades at RHIC and LHC

HF-decay electrons at RHIC (Au-Au)

Inclusive measurement (c+b) using non-photonic electrons

- Same suppression as for light-flavour hadrons above 5 GeV/c
 - Mass already irrelevant?
- Smaller suppression at 2-3 GeV/c: is this the dead cone??

HF-decay e at RHIC (Cu-Cu vs. Au-Au) INFN

- Cu-Cu:
 - ▶ low p_T enhancement in central collisions?
 - no suppression even at 6 GeV/c: not expected in models!?
- Similar R_{AA} as in Au-Au for similar N_{coll} values

N.Apadula (WWND2013)

HF-decay e and μ at RHIC (Cu-Cu)

- ◆ Mid-rapidity (e): R_{AA}~1 → enhancement (from centr. to periph.)
- Forward rapidity (μ): suppression → R_{AA}~1

Theoretical prediction: R. Sharma, I. Vitev, B.-W. Zhang, Phys. Rev. C 80, 054902(2009)

N.Apadula (WWND2013)

HF-decay e and μ at LHC: R_{AA} vs p_T

◆ Electrons and muons from D+B → e,μ decays

 Comparable suppression at central (|y|<0.6) and forward (2.5<y<4) rapidity

- Suppression by a factor about 2 up to 18 GeV/c
 - Dominated by beauty at such high p_T

Z.Conesa (QM2012)

HF-decay μ at LHC vs. centrality

- Clear and consistent centrality dependence for
 - $ightharpoonup R_{AA}$ of muons at forward rapidity (ALICE)
 - R_{CP} of muons at central rapidity (ATLAS)
- \bullet No sign of p_{T} dependence from 4 to 12 GeV/c

Outline of the Talk

- Introduction: HF probes of the medium
- Calibrating HF probes: pp results
- HF production in nucleus-nucleus:
 - Semi-leptonic decays PHENIX, STAR
 - D mesons

 - > B and b-jets
- Proton-nucleus control data
- HF azimuthal anisotropy
- Outlook: detector upgrades at RHIC and LHC

Charm: D mesons at RHIC

◆ STAR: first D R_{AA} in central Au-Au at RHIC

- \triangleright Suppressed as much as pions at high p_T : no mass effect?
- > Large enhancement at 1.5 GeV/c: radial flow + coalescence?

W.Xie (QM2012)

Charm: D mesons at LHC

pointing angle θ_n

- First D R_{AA} measurement in heavy-ion collisions, presented by ALICE at QM2011 (LHC run 2010)
 - Strong suppression observed

Charm: D mesons at LHC

- First D R_{AA} measurement in heavy-ion collisions, presented by ALICE at QM2011 (LHC run 2010)
 - Strong suppression observed
- Measurement extended with LHC run 2011, from 1 to 30 GeV/c

Z.Conesa (QM2012)

Charm: D mesons vs. pions at RHIC and LHC

- D consistent with pions at both energies
 - \triangleright Hint for D > π in 3-6 GeV/c at LHC?
- ◆ D meson R_{AA} similar at RHIC and LHC at 6 GeV/c
- Strikingly different at 1-2 GeV/c: stronger effect from coalescence at RHIC due to steeper spectra?

D_s meson R_{AA} at LHC

- First measurement of D_s in heavy ions
 - Large D_s enhancement expected, if c quarks recombine in the QGP

Data very intriguing, but not conclusive (next LHC run, upgrades)

Outline of the Talk

- ◆ Introduction: HF probes of the medium
- Calibrating HF probes: pp results
- HF production in nucleus-nucleus:
 - Semi-leptonic decays PHENIX, STAR
 - > D mesons
 - ▶ B and b-jets

PHENIX, STAR

STAR

- Proton-nucleus control data
- ◆ HF azimuthal anisotropy
- ◆ Outlook: detector upgrades at RHIC and LHC

INFN

Beauty suppression at LHC

◆ First measurement of beauty R_{AA} by CMS (CMS-PAS-HIN-12-014)

- Centrality dependence of B→J/ψ R_{AA}
 - \circ 50-100%: factor ~1.4 \rightarrow 0-5%: factor ~2.5
- Hint of less suppression at mid-rapidity
- Hint of larger suppression at higher p_T

Is this the dead cone?

 Comparison of charmed mesons (ALICE) with J/ψ from beauty decays (CMS)

First indication of a dependence on heavy quark mass:

$$R_{AA}^{B} > R_{AA}^{D}$$

However, kinematical ranges are not exactly the same

Large b-jet suppression at LHC

◆ CMS finds the same R_{AA} for b-jets as for q/g-jets, as expected at this p_{T}

Outline of the Talk

- ◆ Introduction: HF probes of the medium
- Calibrating HF probes: pp results
- ◆ HF production in nucleus-nucleus:
 - Semi-leptonic decays
 - > D mesons
 - ➤ B and b-jets
- Proton-nucleus control data
- HF azimuthal anisotropy
- Outlook: detector upgrades at RHIC and LHC

Initial state effects on heavy quarks

• Charm production at low p_T : $Q^2 (4m_c^2 \sim 5-10 \text{ GeV}^2)$

Machine	SPS	RHIC	LHC	LHC
System	Pb–Pb	Au-Au	Pb–Pb	pp
$\sqrt{s_{ m NN}}$	17 GeV	200 GeV	5.5 TeV	14 TeV
cc	$x \simeq 10^{-1}$	$x \simeq 10^{-2}$	$x \simeq 4 \times 10^{-4}$	$x \simeq 2 \times 10^{-4}$
bb	_	_	$x \simeq 2 \times 10^{-3}$	$x \simeq 6 \times 10^{-4}$

- → interpretation of HF (charm) measurements in AA requires pA reference
- → charm in pA: access to small-x gluons with perturbative probes

Nuclear modification of PDFs

Eskola et al. JHEP0904(2009)065

Only a QCD medium effect? RHIC

- Small effect expected from PDFs shadowing (<10%)
- Mostly a hot medium effect?
- p/d-A control crucial to quantify initial-state effects

Only a QCD medium effect? LHC

- Small effect expected from PDFs shadowing above 5 GeV/c
- Mostly a hot medium effect above 5 GeV/c?
- p/d-A control crucial to quantify initial-state effects

EPS09: Eskola et al. JHEP0904(2009)065

HF e in d-Au: RHIC results

Phys. Rev. Lett. 109, 242301 (2012)

- Low-p_T electrons (mid-y) and muons (forward y) largely enhanced
- More than expected from anti-shadowing?

HF e in d-Au: RHIC results

- Low-p_T electrons (mid-y) and muons (forward y) largely enhanced
- More than expected from anti-shadowing?
- Significant role of (mass-dependent?) k_T broadening / initialstate partonic scattering?
- ◆ Or is there some final-state "activity"? → need D mesons!!!

HF in p-Pb at LHC: analyses ongoing ...

- Large integrated lumi of the p-Pb run (~30/nb) will allow the experiments (including LHCb!) to measure, with precision ~PbPb2011:
 - HF-decay electrons and muons
 - D mesons, including D_s
 - B→J/ψ, b-jets
- Example: D meson signals in ALICE

Outline of the Talk

- ◆ Introduction: HF probes of the medium
- Calibrating HF probes: pp results
- ◆ HF production in nucleus-nucleus:
 - Semi-leptonic decays
 - > D mesons
 - ➤ B and b-jets
- Proton-nucleus control data
- HF azimuthal anisotropy
- Outlook: detector upgrades at RHIC and LHC

Heavy flavour v_2 : a two-fold observable v_2

- Low p_T: do heavy quarks take part in the "collectivity"?
 - Due to their large mass, c and b quarks should "feel" less the collective expansion
 - → need frequent interactions with large coupling to build v₂
 - $\rightarrow v_2^b < v_2^c$
- \diamond High p_{T} : probe path length dependence of HQ energy loss

J. Aichelin et al. in arXiv:1201.4192

J. Uphoff et al. in arXiv:1205.4945

Heavy-flavour azimuthal anisotropy, from RHIC to LHC

- Electrons from HF show a v₂ of up to 0.15 at RHIC (PHENIX, STAR)
 - Charm does flow!
 - v₂ significantly smaller than for pions above 2 GeV/c (might be decay kinematics, rather than a difference heavy vs. light)
- First measurements at the LHC (ALICE): electron v₂ comparable to RHIC

Heavy-flavour azimuthal anisotropy, from RHIC to LHC

- First D measurements at the LHC (ALICE): D meson v₂>0 in 30-50% class
 - > D meson v₂>0 in 30-50% class & Comparable to v₂ of charged hadrons
 - Suggests flow at low p_T and path-length dependent suppression at high p_T
- First D v₂ measurement at RHIC presented at QM by STAR (not shown)

Z. Conesa (QM2012)

LHC: comparison with models (R_{AA})

 Several models based on E-loss and heavy-quark transport describe qualitatively the measured light, charm, and beauty R_{AA}

LHC: comparison with models $(R_{AA} \text{ and } V_2)$

LHC: comparison with models $(R_{AA} \text{ and } V_2)$

Towards HF tomography

D suppression in different azimuthal directions

much more of this with next LHC run, then upgrades

p_T (GeV/c)

 Models tend to describe R_{AA}(out-of-plane) better than R_{AA}(in-plane)

Z.Conesa (QM2012)

ALI-PREL-34868

Outline of the Talk

- ◆ Introduction: HF probes of the medium
- Calibrating HF probes: pp results
- ◆ HF production in nucleus-nucleus:
 - Semi-leptonic decays
 - > D mesons
 - ➤ B and b-jets
- Proton-nucleus control data
- HF azimuthal anisotropy
- Outlook: detector upgrades at RHIC and LHC
 - Heavy flavour: a central topic for upgrades of all the HI experiments!

PHENIX: Vertex Tracker (VTX)

Electron b-fraction in pp

Ongoing in Au-Au

M. Rosati, QM2012

STAR: Heavy Flavour Tracker

Projections 500M evts

J. Bielcik, Moriond2013

ALICE: new Inner Tracking System

Projections LHC Run3 (10/nb)

Conclusions

- From the experimental point of view, we have just entered the "golden age" for heavy-flavour observables in HI collisions
 - Thanks to the LHC detectors and RHIC upgrades

Whom and What (in AA, as of today)

	PHENIX	STAR	ALICE	ATLAS	CMS
HF electrons	V	V	V		
HF muons	V		V	~	
D ⁰ , D ⁺ , D ^{*+}		V	V		
D_{s}^{+}			V		
Β→J/ψ					V
B jets					V

Conclusions

- From the experimental point of view, we have just entered the "golden age" for heavy-flavour observables in HI collisions
 - Thanks to the LHC detectors and RHIC upgrades

Whom and What (in AA, as of today)

Conclusions

- From the experimental point of view, we have just entered the "golden age" for heavy-flavour observables in HI collisions
 - Thanks to the LHC detectors and RHIC upgrades

Whom and What (in dA, as of today)

Jet Quenching Workshop, BNL 17.04.13

Andrea Dainese

EXTRA SLIDES

What's special about heavy quarks: probes through the full system history

- ♦ Large mass (m_c ~1.5 GeV, m_b ~5 GeV) → produced in large virtuality Q^2 processes at the initial stage of the collision with short formation time Δt > 1/2m ~ 0.1 fm << τ_{OGP} ~ 5-10 fm
- Characteristic flavour, conserved in strong interactions
 - Production in the QGP is subdominant
 - Interactions with QGP don't change flavour identity
- ◆ Uniqueness of heavy quarks: cannot be "destroyed/created" in the medium → transported through the full system evolution
 - → "Brownian motion markers of the medium" (*)

What's special about heavy quarks: probes through the full system history

What's special about heavy quarks: probing the properties of QCD E-loss

Parton Energy Loss by

- medium-induced gluon radiation
- collisions with medium gluons

$$\Delta E(\varepsilon_{medium}; C_R, m, L)$$

 C_R : colour charge dep. m: mass dep. (dead cone, ...)

$$\rightarrow$$
 $\Delta E_g > \Delta E_{c \approx q} > \Delta E_b$

pred:

$$R_{AA}^{\pi} < R_{AA}^{D} < R_{AA}^{B}$$

Much more on this in the talk of A. Buzzatti

See e.g.:

Dokshitzer and Kharzeev, PLB 519 (2001) 199. Armesto, Salgado, Wiedemann, PRD 69 (2004) 114003. Djordjevic, Gyulassy, Horowitz, Wicks, NPA 783 (2007) 493.

'QCD medium'

HF in heavy ion collisions: Who and What

	PHENIX	STAR	ALICE	ATLAS	CMS
HF electrons	V	~	V		
HF muons	V		V	~	
D ⁰ , D ⁺ , D ^{*+}		~	V		
$\mathrm{D_{s}^{+}}$			V		
B→ J /ψ					V
B jets					V

Less gluon radiation for heavy quarks?

- In vacuum, gluon radiation suppressed at $\theta < m_Q/E_Q$
 - → "dead cone" effect

- Dead cone implies lower energy loss (Dokshitzer-Kharzeev, 2001):
 - \bullet energy distribution $\omega dI/d\omega$ of radiated gluons suppressed

by angle-dependent factor

ullet suppresses high- ω tail

$$\omega \frac{\mathrm{d}I}{\mathrm{d}\omega}\Big|_{HEAVY} = \omega \frac{\mathrm{d}I}{\mathrm{d}\omega}\Big|_{LIGHT} \times \left(1 + \left(\frac{m_{\mathrm{Q}}}{E_{\mathrm{Q}}}\right)^{2} \frac{1}{\theta^{2}}\right)^{-2}$$

Dokshitzer, Khoze, Troyan, JPG 17 (1991) 1602. Dokshitzer and Kharzeev, PLB 519 (2001) 199.

HQs E loss: some expectations ...

- Energy loss based predictions: factor 3-5 suppression for D mesons
- Significantly smaller suppression for B

$$R_{AA}^{D}(p_T)$$
 and $R_{AA}^{B}(p_T)$

 ◆ Shorter formation time of heavy hadrons
 → additional R_{AA} suppression due to inmedium dissociation?

$$au_{\text{form}}(p_T = 10 \; GeV)$$
 $au \quad D \quad B$
25 fm 1.6 fm 0.4 fm

Wicks, Gyulassy, "Last Call for LHC Predictions" workshop, 2007

Vitev, et al, PRC80 (2009)

HQs E loss: the AdS/CFT way...?

 Maldacena conjecture: correspondence between super-gravity (Super Yang Mills) and QCD

→ calculate strongly-coupled QCD in SUGRA¹

 Model energy loss by embedding a string in AdS space

One distinctive prediction:

Very strong suppression for charm

Small suppression for beauty up to very large p_T

Friess, Phys Rev D75 (2007)

Horowitz, Gyulassy, PLB666 (2008), Horowitz, arXiv:1108.5876

pp reference at 2.76 TeV via √s-scaling (ALICE D mesons and electrons)

- Scale the 7 TeV cross sections by the 2.76/7 factor from FONLL, with full theoretical uncertainty
 - ➤ relative scaling uncertainty: $30\% \rightarrow 5\%$ in the p_t range $2 \rightarrow 16$ GeV/c
- Validated by comparing to measured cross section at 2.76 TeV (fewer p_t bins)

Averbeck et al., arXiv:1107.3243

JHEP1207 (2012) 191

HF e in d-Au: RHIC results

- Consistent N_{coll}-dependence in d-Au, Cu-Cu, Au-Au
- Move from initial-state effects in d-Au/peripheral Cu-Cu to where the hot medium takes over as system size increases in Cu-Cu and Au-Au

N.Apadula (WWND2013)